Cardiac CT - Coronary Calcium Basics
Workshop II (Basic)

J. Jeffrey Carr, MD, MSCE
Dept. of Radiology & Public Health Sciences
Wake Forest University School of Medicine
Winston-Salem, NC USA
No significant disclosures

Equipment and technical support provided by:
General Electric Medical System, Waukesha, WI
Image Analysis, Inc, Columbia, KY

Some of the techniques discussed may be experimental

Funding:
NIH / NIAMS AR48797
NIH / NHLBI HL067348
WFU GCRC M01-RR07122
Workshop Outline

- Objective - learn how to measure calcified coronary plaque CT
- Cardiac CT “hardware”
- Cardiac CT “software”
- Discuss future standardization process
Set of Axial CT images or “slices”
Report Pixels

Name: D5SMK5EAF
ID: D5S9603
Exam 117 Series 3 Image 31

<table>
<thead>
<tr>
<th></th>
<th>308</th>
<th>309</th>
<th>310</th>
<th>311</th>
<th>312</th>
<th>313</th>
<th>314</th>
<th>315</th>
<th>316</th>
<th>317</th>
<th>318</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>-1</td>
<td>-29</td>
<td>-68</td>
<td>-102</td>
<td>-102</td>
<td>-94</td>
<td>-172</td>
<td>-182</td>
</tr>
<tr>
<td>214</td>
<td>1</td>
<td>-125</td>
<td>-128</td>
<td>-125</td>
<td>-127</td>
<td>-165</td>
<td>-137</td>
<td>62</td>
<td>346</td>
<td>265</td>
<td>42</td>
</tr>
<tr>
<td>215</td>
<td>1</td>
<td>-156</td>
<td>-148</td>
<td>-150</td>
<td>-158</td>
<td>-163</td>
<td>-103</td>
<td>86</td>
<td>343</td>
<td>317</td>
<td>131</td>
</tr>
<tr>
<td>216</td>
<td>1</td>
<td>-165</td>
<td>-167</td>
<td>-178</td>
<td>-183</td>
<td>-129</td>
<td>-48</td>
<td>-22</td>
<td>54</td>
<td>128</td>
<td>92</td>
</tr>
<tr>
<td>217</td>
<td>1</td>
<td>-140</td>
<td>-130</td>
<td>-144</td>
<td>-113</td>
<td>22</td>
<td>49</td>
<td>-28</td>
<td>25</td>
<td>94</td>
<td>75</td>
</tr>
<tr>
<td>218</td>
<td>1</td>
<td>-77</td>
<td>-52</td>
<td>-17</td>
<td>131</td>
<td>229</td>
<td>104</td>
<td>13</td>
<td>53</td>
<td>92</td>
<td>71</td>
</tr>
<tr>
<td>219</td>
<td>1</td>
<td>19</td>
<td>99</td>
<td>177</td>
<td>249</td>
<td>155</td>
<td>28</td>
<td>1</td>
<td>39</td>
<td>44</td>
<td>32</td>
</tr>
<tr>
<td>220</td>
<td>1</td>
<td>81</td>
<td>111</td>
<td>99</td>
<td>49</td>
<td>-38</td>
<td>-45</td>
<td>-6</td>
<td>-11</td>
<td>-28</td>
<td>-46</td>
</tr>
<tr>
<td>221</td>
<td>1</td>
<td>31</td>
<td>28</td>
<td>-9</td>
<td>-56</td>
<td>-67</td>
<td>-43</td>
<td>-35</td>
<td>-37</td>
<td>-72</td>
<td>-96</td>
</tr>
<tr>
<td>222</td>
<td>1</td>
<td>12</td>
<td>12</td>
<td>-11</td>
<td>-41</td>
<td>-31</td>
<td>-37</td>
<td>-41</td>
<td>-55</td>
<td>-84</td>
<td>-108</td>
</tr>
</tbody>
</table>

WW: 400 **WL:** 40

J. Jeffrey Carr, MD, MS
Key Factors Cardiac CT - Image Quality

- Gantry speed
- Scan mode
- Tube
- Detector Configuration

- Temporal Resolution
- Scan time
- Gating Method
- Radiation Exposure
- Signal to Noise
- Spatial Resolution
EMI Clinical CT system
MDCT 4, 8, 16, 32, 64 -- volume?
MDCT - basics think “Angio Suite”

Diagram showing a CT scan setup with a tube, detector, and CT couch.
Gantry Speed = Time to make 360 degree rotation

<table>
<thead>
<tr>
<th>Gantry Speed [sec]</th>
<th>Cardiac image “time”</th>
</tr>
</thead>
<tbody>
<tr>
<td>(year introduced)</td>
<td>(Axial partial scan recon)</td>
</tr>
<tr>
<td>1 (1996)</td>
<td>800 msec</td>
</tr>
<tr>
<td>0.8 (1998)</td>
<td>520 msec</td>
</tr>
<tr>
<td>0.5 (2000)</td>
<td>305 msec</td>
</tr>
<tr>
<td>0.4 (2003)</td>
<td>240 msec</td>
</tr>
<tr>
<td>0.37 (2004)</td>
<td>225 msec</td>
</tr>
<tr>
<td>C100-eSpeed (85-03)</td>
<td>50 / 100 msec</td>
</tr>
</tbody>
</table>
Cardiac Scan Mode
Axial (cine) = stationary couch
Helical = moving couch (pitch)

• Determines ECG gating method
• Impacts radiation dose
• Impact spatial & temporal resolution
<table>
<thead>
<tr>
<th>Radiation (tube on time)</th>
<th>Axial (Cine)</th>
<th>Helical-Cardiac</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 - 1.5 mSv</td>
<td>> 3-15 mSv</td>
</tr>
<tr>
<td></td>
<td>(6-8 secs)</td>
<td>(>20 secs)</td>
</tr>
<tr>
<td>resolution (z- & temporal)</td>
<td>+++</td>
<td>++++</td>
</tr>
<tr>
<td></td>
<td>(? MDCT16-64)</td>
<td></td>
</tr>
<tr>
<td>Robustness (?idiot proof)</td>
<td>high</td>
<td>Some limits</td>
</tr>
<tr>
<td>Clinical application</td>
<td>Established CAC</td>
<td>CTA / Function</td>
</tr>
</tbody>
</table>
Detectors - E Speed
MDCT = Multiple Slices Configurations

2 x 0.0625 mm

8 x 1.25 mm

8 x 2.5 mm
Cardiac Gating & Scan Modes

• Cardiac Gating
 – Prospective (triggered on R wave)
 – Retrospective (post-processing)

• Scan modes
 – Axial / Cine (step and shoot)
 – Helical / Helical Multi-sector
ECG – Prospective (Triggering)
MDCT - Helical / Spiral
MDCT - Axial / sequential / cine
Prospective Scanning

- Lower Dose
- Multi-slice acquisition in a single cardiac cycle
- Less system overhead
- Does not support overlap recon

Graphic courtesy of General Electric Medical Systems & modified by Dr. Carr
Retrospective Gating
Retrospective Gating

Single Sector Reconstruction Method - SnapShot Segment

Graphic courtesy of General Electric Medical Systems & modified by Dr. Carr
Multi-Sector Image Reconstruction:

Improving Effective Temporal Resolution

4 sectors: ~ 65 msec on LightSpeed Plus/Ultra

Graphic courtesy of General Electric Medical Systems
Single Slice Cardiac CT

Heartbeat

1 2 3 4 5 6 7 8
Multi-Detector CT (MDCT)
4 Channels
MDCT (4 slices x 2.5 mm)
Single R-R interval
MDCT (16 levels x 1.25 mm)
Single R-R interval
<table>
<thead>
<tr>
<th>Mode images/rr</th>
<th>Thickness slice [mm] slab [mm]</th>
<th>Slabs needed for 120mm</th>
<th>Breathhold time [sec]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5</td>
<td>48</td>
<td>80-160</td>
</tr>
<tr>
<td></td>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2.5</td>
<td>12</td>
<td>20-40</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2.5</td>
<td>6</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16/8</td>
<td>1.25</td>
<td>6</td>
<td>10-20</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Patient Preparation & Instructions

• Prior to study (tell clinic staff to remind at scheduling)
 – No caffeine products before scan
 – Will have to change into gown (optional)
 – Beta blockers not indicated for calcium scoring

• Immediate pre-scan
 – Change into hospital gown
 – Easier if opens in front (placing ECG leads)
 – Safety checks which are routine at your institution (i.e. LMP, pregnancy etc..)
Where to scan? - Landmarks
“Take a deep breath in <pause>
blow it all the way out <pause>
Take a deep breath in <pause>
blow it all the way out <pause>
Take a deep breath in and hold it.

******Scan 8-20 seconds*****

Breath and relax”
Breath holding Instructions

- Instruction after greeting patient
- Prepare patient by indicating there will be several times they are asked to hold their breath – some short (the scouts) and some longer
- Instruction & observation during scout images
Breathing Instruction
– why longer than the scan?

• End inspiration.
 – Pushes liver down – less beam attenuation
 – Valsalva lowers heart rate.
 – Easier to do than end expiration.
 – Blowing off C0₂ (hyperventilation) - easier to hold breath!

• Pre-recorded voice if available.
ECG – Setup

• Arms overhead
• Reposition leads if necessary
• Make sure amplitude (i.e. size) is OK per your CT scanner instructions
• Trigger at 50% RR
 – (alternate 75% RR)
ECG lead Placement
- several options
ECG positioning

“White is Right (white lead)–
Smoke (black) over Fire (red) (left side)

• Identifiable R-wave
• Trouble shooting
 – Reposition leads / electrodes
 – check connections
 – Move closer to the heart
Movie clip
Measuring Coronary Calcium

<table>
<thead>
<tr>
<th>Name: IHSMCKEMAF</th>
<th>ID: IH9603</th>
</tr>
</thead>
<tbody>
<tr>
<td>exam 117 series 3 image 31</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Report Pixels</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>212</td>
</tr>
<tr>
<td>214</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>216</td>
</tr>
<tr>
<td>217</td>
</tr>
<tr>
<td>218</td>
</tr>
<tr>
<td>219</td>
</tr>
<tr>
<td>220</td>
</tr>
<tr>
<td>221</td>
</tr>
<tr>
<td>222</td>
</tr>
</tbody>
</table>

WW: 400 WL: 40
EBCT and CAC

- Agaston and Janowitz et. al. developed Total Calcium Score (TCS)
- System for scoring amount of calcified plaque:
 - area of plaque \times weighting factor = lesion score
 - weighting based on brightest pixel in lesion
 - sum of lesion scores = vessels score
 - sum of vessel scores = total calcium score (TCS)
EBCT - Conventional (AJ) scoring

- **CT #** wt. factor
- 0-129 ===> 0
- 130-199 ===> 1
- 200-299 ===> 2
- 300-399 ===> 3
- >400 ===> 4

- (area) x wt. Factor = lesion score
CT image to quantitative data
<table>
<thead>
<tr>
<th></th>
<th>308</th>
<th>309</th>
<th>310</th>
<th>311</th>
<th>312</th>
<th>313</th>
<th>314</th>
<th>315</th>
<th>316</th>
<th>317</th>
<th>318</th>
</tr>
</thead>
<tbody>
<tr>
<td>212</td>
<td>5</td>
<td>4</td>
<td>-1</td>
<td>-29</td>
<td>-68</td>
<td>-102</td>
<td>-102</td>
<td>-94</td>
<td>-172</td>
<td>-182</td>
<td>-74</td>
</tr>
<tr>
<td>213</td>
<td>-47</td>
<td>-57</td>
<td>-86</td>
<td>-97</td>
<td>-133</td>
<td>-145</td>
<td>-64</td>
<td>36</td>
<td>-29</td>
<td>-79</td>
<td>-38</td>
</tr>
<tr>
<td>214</td>
<td>-125</td>
<td>-128</td>
<td>-125</td>
<td>-127</td>
<td>-165</td>
<td>-137</td>
<td>62</td>
<td>346</td>
<td>265</td>
<td>42</td>
<td>27</td>
</tr>
<tr>
<td>215</td>
<td>-156</td>
<td>-148</td>
<td>-150</td>
<td>-158</td>
<td>-163</td>
<td>-103</td>
<td>86</td>
<td>343</td>
<td>317</td>
<td>131</td>
<td>84</td>
</tr>
<tr>
<td>216</td>
<td>-165</td>
<td>-167</td>
<td>-178</td>
<td>-183</td>
<td>-129</td>
<td>-48</td>
<td>-22</td>
<td>54</td>
<td>128</td>
<td>92</td>
<td>74</td>
</tr>
<tr>
<td>217</td>
<td>-140</td>
<td>-144</td>
<td>-113</td>
<td>22</td>
<td>49</td>
<td>-28</td>
<td>25</td>
<td>94</td>
<td>75</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>218</td>
<td>-77</td>
<td>-52</td>
<td>-17</td>
<td>131</td>
<td>229</td>
<td>104</td>
<td>13</td>
<td>53</td>
<td>92</td>
<td>71</td>
<td>35</td>
</tr>
<tr>
<td>219</td>
<td>99</td>
<td>177</td>
<td>249</td>
<td>155</td>
<td>28</td>
<td>1</td>
<td>39</td>
<td>44</td>
<td>32</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>220</td>
<td>81</td>
<td>111</td>
<td>99</td>
<td>49</td>
<td>-38</td>
<td>-45</td>
<td>-6</td>
<td>-11</td>
<td>-28</td>
<td>-46</td>
<td>-89</td>
</tr>
<tr>
<td>221</td>
<td>31</td>
<td>28</td>
<td>-9</td>
<td>-56</td>
<td>-67</td>
<td>-43</td>
<td>-35</td>
<td>-37</td>
<td>-72</td>
<td>-96</td>
<td>-140</td>
</tr>
<tr>
<td>222</td>
<td>12</td>
<td>12</td>
<td>-11</td>
<td>-41</td>
<td>-31</td>
<td>-37</td>
<td>-41</td>
<td>-55</td>
<td>-84</td>
<td>-108</td>
<td>-151</td>
</tr>
</tbody>
</table>

Plaque 1

Plaque 2

J. Jeffrey Carr, MD, MS
Conventional Scoring (Agatston)

• Plaque 1
 – Number pixels above 130 threshold = 5
 – Highest CT# = 249
 – Weight = 2
 – $5 \times 2 = 10$

• Plaque 2
 – Number pixels above 130 threshold = 5
 – Highest CT# = 346
 – Weight = 3
 – $5 \times 3 = 15$
Variability in 1 Pixel by 1 H.U. can Double the Agatston Score

- **Scan 1**
 - CAC area = 10
 - all pixels in lesion > 130 CT#
 - brightest pixel \(\text{CT#} = 199 \); wt factor = 1
 - \(10 \times 1 = 10 \) lesion score

- **Scan 2**
 - CAC area = 10
 - all pixels in lesion > 130 CT#
 - brightest pixel \(\text{CT#} = 200 \); wt factor = 2
 - \(10 \times 2 = 20 \)
CT Calcified Plaque Area

- Pixel dimensions (2D: height x width [mm2]):
 - 350 mm fov
 - 512 rows and columns
 - $350 / 512 = 0.68$ mm

J. Jeffrey Carr, MD, MS
CT Calcified Plaque Volume

- Voxel (volume element = ht x wt x depth)
 - Slice thickness = 2.5 mm
 - Voxel volume calculation
 - $0.68 \text{ mm} \times 0.68 \text{ mm} \times 2.5 \text{ mm} = 1.16 \text{ mm}^3$
Volume = 0.68 mm \times 0.68 mm \times 2.5 mm = 1.16 \text{ mm}^3
Plaque Volume by CT

- Plaque 1 = Plaque 2
 - # pixels >= 130 = 5
 - # pixels >= 90 = 6
- Plaque Volume @ 130 threshold
 - 5 pixels x 1.16 = 5.8 mm3
- Plaque Volume @ 90 threshold
 - 6 pixels x 1.16 = 6.9 mm3
MDCT - Improved Spatial Resolution

2.5 mm slices 1.25 mm slices
2.5 mm slices

1.25 mm slices

LAD

Great Coronary vein

J. Jeffrey Carr, MD, MS
Calibration of CT Systems
Calcified Plaque Mass [mg]
CT Technique – Coronary Calcium State of the Art - 2004

- Axial (Cine) mode
- 2.5 mm slice collimation
- Prospective ECG gating/triggering @ 50% RR
- KVp 120, 50 - 100 mAs
- Maximize scan speed (temporal resolution)
 - 0.4-0.5 sec gantry rotation
 - partial scan reconstruction
- Dose ~ 1 mSv
Weight and mAs

If the weight is **less than 100 kg / 220 lbs**
Set mAs = 50-100
{know how your system calculates mas}

If the weight is **100 kg / 220 lbs or greater**
Set mAs = 25% increase

Objective - image noise & calcium score independent of patient size
Conclusions
MDCT Calcified Plaque

• MDCT-4 or greater
• 0.5 second gantry (or faster)
• Prospective gating (Axial scan mode) for non-contrast Coronary Calcium Scan
• ECG gated helical scan for CT coronary angiography - ramp mA
• Future hybrid protocols likely prior to introduction of volume CT.